Abstract

Retrospective review of an adult deformity database. To identify pelvic incidence (PI) and age-appropriate physical function alignment targets using a component angle of T1-pelvic angle within the fusion to define correction and their relationship to proximal junctional kyphosis (PJK) and clinical outcomes. In preoperative planning, a patient's PI is often utilized to determine the alignment target. In a trend toward more patient-specific planning, age-specific alignment has been shown to reduce the risk of mechanical failures. PI and age have not been analyzed with respect to defining a functional alignment. A database of patients with operative adult spinal deformity was analyzed. Patients fused to the pelvis and upper-instrumented vertebrae above T11 were included. Alignment within the fusion correlated with clinical outcomes and PI. Short form 36-Physical Component Score (SF36-PCS) normative data and PI were used to compute functional alignment for each patient. Overcorrected, under-corrected, and functionally corrected groups were determined using T10-pelvic angle (T10PA). In all, 1052 patients met the inclusion criteria. T10PA correlated with SF36-PCS and PI (R=0.601). At six weeks, 40.7% were functionally corrected, 39.4% were overcorrected, and 20.9% were under-corrected. The PJK incidence rate was 13.6%. Overcorrected patients had the highest PJK rate (18.1%) compared with functionally (11.3%) and under-corrected (9.5%) patients ( P <0.05). Overcorrected patients had a trend toward more PJK revisions. All groups improved in HRQL; however, under-corrected patients had the worst 1-year SF36-PCS offset relative to normative patients of equivalent age (-8.1) versus functional (-6.1) and overcorrected (-4.5), P <0.05. T10PA was used to determine functional alignment, an alignment based on PI and age-appropriate physical function. Correcting patients to functional alignment produced improvements in clinical outcomes, with the lowest rates of PJK. This patient-specific approach to spinal alignment provides adult spinal deformity correction targets that can be used intraoperatively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call