Abstract

Fulminant hepatic failure (FHF) is still associated with high mortality despite recent advances in medical management. There is need of an effective and safe bioartificial liver (BAL) support to help keep patients with FHF alive until an organ becomes available for transplantation or the native liver recovers. The aim of this study was to establish highly functional liver cells by means of transfecting hepatocyte nuclear factor (HNF)-4 gene for the development of BAL. We constructed adenovirus vector carrying rat HNF-4 cDNA, and transfected to hepatoma-derived cell lines, HepG2 and HuH-7, to enforce expression of the exogenous HNF-4 gene. We analyzed expression of HNF-4, HNF-1, and liver-specific genes in cells infected by the adenovirus vector expressing HNF-4. Adenovirus-mediated HNF-4 gene transfer resulted in increases in expressions of HNF-4, HNF-1, and liver-specific genes such as apolipoproteins, alpha1-antitrypsin (alpha1-AT), phosphoenolpyruvate carboxy-kinase, cytochrome P450 families, and glutamine synthetase in transfected hepatoma cells. Cells overexpressing HNF-4 removed ammonia from medium supplemented with NH4Cl to a greater extent than control cells. These findings demonstrated that transfected cell lines restored differentiated gene expressions and liver-specific function by the overproduction of HNF-4. HNF-4-overexpressing hepatocyte cell lines are useful for bioreactor of BAL systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.