Abstract
Immunotherapy efficacy has been limited by tumor-associated macrophages (TAMs), which are the most abundant immune regulatory cells infiltrating around tumor tissues. The repolarization of pro-tumor M2 TAMs to anti-tumor M1 TAMs is a very promising immunotherapeutic strategy for cancer therapy. In this manuscript, multifunctional 2D iron-based nanosheets (FeNSs) are synthesized via a simple hydrothermal method for the first time, which not only possess photothermal and photodynamic properties, but also can repolarize TAMs from M2 to M1. After modifying with polyethylene glycol and loading with bioreductive prodrug banoxantrone (AQ4N), abbreviated as AP FeNSs, it can effectively repolarize TAMs from M2 to M1 and deliver AQ4N to tumor microenvironment (TME). Moreover, the repolarized M1 TAMs overexpress inducible nitric oxide synthase, which can convert nontoxic AQ4N to cytotoxic AQ4 under hypoxic TME, enabling immunomodulation-activated chemotherapy. A series of in vitro and in vivo results corroborate that AP FeNSs effectively exert photothermal and photodynamic effects and repolarize M2 TAMs to M1 TAMs, releasing inflammatory factors and activating the chemotherapeutic effect, thereby realizing synergistic tumor therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.