Abstract

Micromachines are at the forefront of materials research as they are self-propelled, smart autonomous systems capable of acting as an intelligent matter. One of the obstacles the field faces is tracking individual micromachines carrying molecular cargo from the rest of the micromachines. Highly stable fluorescent markers based on chemically modified 2D germanene compounds are developed. Two different 2D germanene derivatives, 4-fluorophenylgermanane (2D-Ph-Ge) and methylgermanane (2D-Me-Ge), exhibit different fluorescence under UV light irradiation (excitation at 365 nm), which allows one particular micromotor to be easily distinguished in a mixture of micromotors. This offers a paradigm shift toward a new approach of multiplex detection of self-propelled micromachines. The utility is demonstrated on a drug delivery system, where micromachines carrying a drug are labeled with 2D-Ph-Ge with blue emission while bare micromachines are labeled by 2D-Me-Ge with red emission. This approach of functional fluorescent labeling will pave the way to multiple simultaneous functionalized micromachines identification in complex environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.