Abstract
Active transport of sugars into bacteria occurs through symporters driven by ion gradients. LacY is the most well-studied proton sugar symporter, whereas vSGLT is the most characterized sodium sugar symporter. These are members of the major facilitator (MFS) and the amino acid-Polyamine organocation (APS) transporter superfamilies. While there is no structural homology between these transporters, they operate by a similar mechanism. They are nano-machines driven by their respective ion electrochemical potential gradients across the membrane. LacY has 12 transmembrane helices (TMs) organized in two 6-TM bundles, each containing two 3-helix TM repeats. vSGLT has a core structure of 10 TM helices organized in two inverted repeats (TM 1–5 and TM 6–10). In each case, a single sugar is bound in a central cavity and sugar selectivity is determined by hydrogen- and hydrophobic- bonding with side chains in the binding site. In vSGLT, the sodium-binding site is formed through coordination with carbonyl- and hydroxyl-oxygens from neighboring side chains, whereas in LacY the proton (H3O+) site is thought to be a single glutamate residue (Glu325). The remaining challenge for both transporters is to determine how ion electrochemical potential gradients drive uphill sugar transport.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.