Abstract

Assume that we want to recover $f : \Omega \to {\bf C}$ in the $L_r$-quasi-norm ($0 < r \le \infty$) by a linear sampling method $$ S_n f = \sum_{j=1}^n f(x^j) h_j , $$ where $h_j \in L_r(\Omega )$ and $x^j \in \Omega$ and $\Omega \subset {\bf R}^d$ is an arbitrary bounded Lipschitz domain. We assume that $f$ is from the unit ball of a Besov space $B^s_{pq} (\Omega)$ or of a Triebel--Lizorkin space $F^s_{pq} (\Omega)$ with parameters such that the space is compactly embedded into $C(\overline{\Omega})$. We prove that the optimal rate of convergence of linear sampling methods is $$ n^{ -{s}/{d} + ({1}/{p}-{1}/{r})_+} , $$ nonlinear methods do not yield a better rate. To prove this we use a result from Wendland (2001) as well as results concerning the spaces $B^s_{pq} (\Omega) $ and $F^s_{pq}(\Omega)$. Actually, it is another aim of this paper to complement the existing literature about the function spaces $B^s_{pq} (\Omega)$ and $F^s_{pq} (\Omega)$ for bounded Lipschitz domains $\Omega \subset {\bf R}^d$. In this sense, the paper is also a continuation of a paper by Triebel (2002).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call