Abstract
The goal of this paper is to prove that the classifying spaces of categories of algebras governed by a prop can be determined by using function spaces on the category of props. We first consider a function space of props to define the moduli space of algebra structures over this prop on an object of the base category. Then we mainly prove that this moduli space is the homotopy fiber of a forgetful map of classifying spaces, generalizing to the prop setting a theorem of Rezk. The crux of our proof lies in the construction of certain universal diagrams in categories of algebras over a prop. We introduce a general method to carry out such constructions in a functorial way.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.