Abstract
Two existing function-space quasi-Newton algorithms, the Davidon algorithm and the projected gradient algorithm, are modified so that they may handle directly control-variable inequality constraints. A third quasi-Newton-type algorithm, developed by Broyden, is extended to optimal control problems. The Broyden algorithm is further modified so that it may handle directly control-variable inequality constraints. From a computational viewpoint, dyadic operator implementation of quasi-Newton methods is shown to be superior to the integral kernel representation. The quasi-Newton methods, along with the steepest descent method and two conjugate gradient algorithms, are simulated on three relatively simple (yet representative) bounded control problems, two of which possess singular subarcs. Overall, the Broyden algorithm was found to be superior. The most notable result of the simulations was the clear superiority of the Broyden and Davidon algorithms in producing a sharp singular control subarc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.