Abstract

This paper deals with the function projective synchronization of two complex dynamic networks with unknown sector nonlinear input, multiple time-varying delay couplings, model uncertainty, and external interferences. Based on Lyapunov stability theory and inequality transformation method, the robust adaptive synchronization controller is designed, by which the drive and response systems can achieve synchronization according to the function scaling factor. Different from some existing studies on nonlinear system with sector nonlinear input, this paper studies the synchronization of two complex dynamic networks when the boundary of sector nonlinear input is unknown. The controller does not include the boundary value of the sector nonlinear input and the time delay term, so it is more practical and relatively easy to implement. The corresponding simulation examples demonstrate the effectiveness of the proposed scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.