Abstract

Mass spectrometry proteomics, characterized by spiky, spatially heterogeneous functional data, can be used to identify potential cancer biomarkers. Existing mass spectrometry analyses utilize mean regression to detect spectral regions that are differentially expressed across groups. However, given the inter-patient heterogeneity that is a key hallmark of cancer, many biomarkers are only present at aberrant levels for a subset of, not all, cancer samples. Differences in these biomarkers can easily be missed by mean regression, but might be more easily detected by quantile-based approaches. Thus, we propose a unified Bayesian framework to perform quantile regression on functional responses. Our approach utilizes an asymmetric Laplace working likelihood, represents the functional coefficients with basis representations which enable borrowing of strength from nearby locations, and places a global-local shrinkage prior on the basis coefficients to achieve adaptive regularization. Different types of basis transform and continuous shrinkage priors can be used in our framework. A scalable Gibbs sampler is developed to generate posterior samples that can be used to perform Bayesian estimation and inference while accounting for multiple testing. Our framework performs quantile regression and coefficient regularization in a unified manner, allowing them to inform each other and leading to improvement in performance over competing methods as demonstrated by simulation studies. We also introduce an adjustment procedure to the model to improve its frequentist properties of posterior inference. We apply our model to identify proteomic biomarkers of pancreatic cancer that are differentially expressed for a subset of cancer patients compared to the normal controls, which were missed by previous mean-regression based approaches. Supplementary materials for this article are available online.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.