Abstract

Fully grown immature oocytes acquire the ability to be fertilized with sperm after meiotic maturation, which is finally accomplished by the formation and activation of the maturation-promoting factor (MPF). MPF is the complex of Cdc2 and cyclin B, and its function in promoting metaphase is common among species. The Mos/mitogen-activated protein kinase (MAPK) pathway is also commonly activated during vertebrate oocyte maturation, but its function seems to be different among species. We investigated the function of the Mos/MAPK pathway during oocyte maturation of the frog Rana japonica. Although MAPK was activated in accordance with MPF activation during oocyte maturation, MPF activation and germinal vesicle breakdown (GVBD) was not initiated when the Mos/MAPK pathway was activated in immature oocytes by the injection of c-mos mRNA. Inhibition of Mos synthesis by c-mos antisense RNA and inactivation of MAPK by CL100 phosphatase did not prevent progesterone-induced MPF activation and GVBD. However, continuous MAPK activation and MAPK inhibition through oocyte maturation accelerated and delayed MPF activation, respectively. Furthermore, Mos induced a low level of cyclin B protein synthesis in immature oocytes without the aid of MAPK. These results suggest that the general function of the Mos/MAPK pathway, which is not essential for MPF activation and GVBD in Rana oocytes, is to enhance cyclin B translation by Mos itself and to stabilize cyclin B protein by MAPK during oocyte maturation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.