Abstract
In plants, two types of methionine sulfoxide reductase (MSR) exist, namely methionine-S-sulfoxide reductase (MSRA) and methionine-R-sulfoxide reductase (MSRB). These enzymes catalyze the reduction of methionine sulfoxides (MetO) back to methionine (Met) by a catalytic cysteine (Cys) and one or two resolving Cys residues. Interestingly, a group of MSRA encoded by plant genomes does not have a catalytic residue. We asked that if this group of MSRA did not have any function (as fitness), why it was not lost during the evolutionary process. To challenge this question, we analyzed the gene family encoding MSRA in soybean (GmMSRAs). We found seven genes encoding GmMSRAs, which included three segmental duplicated pairs. Among them, a pair of duplicated genes, namely GmMSRA1 and GmMSRA6, was without a catalytic Cys residue. Pseudogenes were ruled out astheir transcripts were detected in various tissues and their Ka/Ks ratio indicated a negative selection pressure. In vivo analysis in Δ3MSR yeast strain indicated that the GmMSRA6 did not have activity toward MetO, contrasting to GmMSRA3 which had catalytic Cys and had activity. When exposed to H2O2-induced oxidative stress, GmMSRA6 did not confer any protection to the Δ3MSR yeast strain. Overexpression of GmMSRA6 in Arabidopsis thaliana did not alter the plant's phenotype under physiological conditions. However, the transgenic plants exhibited slightly higher sensitivity toward salinity-induced stress. Taken together, this data suggested that the plant MSRAs withoutthe catalytic Cys are not enzymatically active and their existence may be explained by a role in regulating plant MSR activity via dominant-negative substrate competition mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.