Abstract

Previous work on peripheral sympathetic neurons indicated that a decline in sarco/endoplasmic reticulum calcium ATPase (SERCA) function occurs with advancing age. Therefore, an age-related decline in mechanisms controlling intracellular calcium homeostasis could contribute to altered neuronal function and/or degeneration. In this study we sought to extend the findings on peripheral neurons and to detect possible age-related declines in SERCA function and expression of SERCA3 in central neurons from cerebral cortex from young (6-month) and old (20-month) rats. Functional studies compared ATP-dependent 45Ca2+-uptake into microsomes and plasma membrane vesicles (PMVs). We and found no significant difference in 45Ca2+-uptake between microsomes or PMVs between young and old animals. On the other hand expression of SERCA3 mRNA in rat cerebral cortex showed a significant decline with advancing age. However, comparison of SERCA3 protein content did not reveal a corresponding decline; implying that SERCA mRNA turnover rates may be greater in the younger group. Although the present work with rat cerebral cortex does not indicate an age-related decline in SERCA function, previous work from our laboratory on sympathetic nerves and by others on the hippocampus indicate such a decline. In light of our previous and current studies, aging may affect calcium homeostatic mechanisms in central and peripheral autonomic neurons differently.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.