Abstract

Bacterial RNase P is composed of an RNA subunit and a single protein (encoded by the rnpB and rnpA genes respectively). The Bacillus subtilis rnpA knockdown strain d7 was used to screen for functional conservation among bacterial RNase P proteins from a representative spectrum of bacterial subphyla. We demonstrate conserved function of bacterial RNase P (RnpA) proteins despite low sequence conservation. Even rnpA genes from psychrophilic and thermophilic bacteria rescued growth of B. subtilis d7 bacteria; likewise, terminal extensions and insertions between beta strands 2 and 3, in the so-called metal binding loop, were compatible with RnpA function in B. subtilis. A deletion analysis of B. subtilis RnpA defined the structural elements essential for bacterial RNase P function in vivo. We further extended our complementation analysis in B. subtilis strain d7 to the four individual RNase P protein subunits from three different Archaea, as well as to human Rpp21 and Rpp29 as representatives of eukaryal RNase P. None of these non-bacterial RNase P proteins showed any evidence of being able to replace the B. subtilis RNase P protein in vivo, supporting the notion that archaeal/eukaryal RNase P proteins are evolutionary unrelated to the bacterial RnpA protein.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call