Abstract
Numerous Cl- channels have been identified in the kidney using physiological approaches and thus are thought to be involved in a range of physiological processes, including vectorial transepithelial Cl- transport, cell volume regulation, and vesicular acidification. In addition, expression of genes from several Cl- channel gene families has also been observed. However, the molecular characteristics of a number of Cl- channels within the kidney are still unknown, and the physiological roles of Cl- channels identified by molecular means remain to be determined. A gene knockout approach using mice might shed further light on the characteristics of these various Cl- channels. In addition, study of diseases involving Cl- channels (channelopathies) might clarify the physiological role of specific Cl- channels. To date, more is known about CLC Cl- channels than any other Cl- channels within the kidney. This review focuses on the physiological roles of CLC Cl- channels within the kidney, particularly kidney-specific ClC-K Cl- channels, as well as the recently identified maxi anion channel in macula densa, which is involved in tubulo-glomerular feedback.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.