Abstract

Using genes which have been experimentally-validated for diseases (functions) can develop machine learning methods to predict new disease/function-genes. However, the prediction of both function-genes and disease-genes faces the same problem: there are only certain positive examples, but no negative examples. To solve this problem, we proposed a function/disease-genes prediction algorithm based on network embedding (Variational Graph Auto-Encoders, VGAE) and one-class classification (Fast Minimum Covariance Determinant, Fast-MCD): VGAEMCD. Firstly, we constructed a protein-protein interaction (PPI) network centered on experimentally-validated genes; then VGAE was used to get the embeddings of nodes (genes) in the network; finally, the embeddings were input into the improved deep learning one-class classifier based on Fast-MCD to predict function/disease-genes. VGAEMCD can predict function-gene and disease-gene in a unified way, and only the experimentally-verified genes are needed to provide (no need for expression profile). VGAEMCD outperforms classical one-class classification algorithms in Recall, Precision, F-measure, Specificity, and Accuracy. Further experiments show that seven metrics of VGAEMCD are higher than those of state-of-art function/disease-genes prediction algorithms. The above results indicate that VGAEMCD can well learn the distribution characteristics of positive examples and accurately identify function/disease-genes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.