Abstract

Calcineurin (CN), a Ca2+/calmodulin-dependent protein phosphatase, plays a critical role in T-cell activation by regulating the activity of NF-AT. CN is a heterodimer consisting of a catalytic subunit (CNA) and a Ca2+-binding regulatory subunit (CNB). CNB is composed of two global domains: the C-terminal domain (DC) and the N-terminal domain (DN), each containing two Ca2+ binding sites. In this study, using purified DN and DC derived from constructed expression systems, we revealed that intact CNB and DC can stimulate the phosphatase activity of CNA, about 2.2 and 1.6 times the phosphatase activity of CNA alone, respectively; DN itself has little effect on the phosphatase activity of CNA. Fluorescence spectroscopy of an ANS-hydrophobic fluorescence probe shows that binding of Ca2+ to CNB, DC or DN leads to exposure of the hydrophobic surface of the proteins and that the hydrophobicity of CNB is the greatest, that of DC is less, and that of DN is the least. The hydrophobic surface of CNB may be an important structural basis for stimulating CN phosphatase activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call