Abstract

During the early postnatal period, the differentiation and maturation of muscle spindles in the rat is still dependent on their sensory innervation. When a nerve is crushed during this period, most spindles in the denervated muscles degenerate and after reinnervation only occasional spindles of atypical structure are to be found in these muscles. We determined the basic functional properties of these atypical spindles in adult rats and attempted to correlate them with their structural characteristics. The discharge rates of 13 afferent units from the soleus or lateral gastrocnemius muscles were evaluated in response to stretch. These units were capable of a slowly adapting response to 2-4 mm stretches. Their mean discharge frequencies at any point of the ramp-and-hold stretch were, however, on an average 50% lower than normal values. The conduction velocities of afferents from the atypical spindles were in the range of 10-40 m/s. Histological examinations revealed that 90% of the atypical muscle spindles found in the soleus or lateral gastrocnemius muscles had only 1 or 2 intrafusal fibres without any nuclear accumulations as compared to four intrafusal fibres in normal muscle spindles in the rat. The proportional decrease of the discharge rate in both the dynamic and static part of the response of these atypical spindles could be due to the decreased synaptic area between the sensory terminals and the intrafusal fibres and/or to altered structural properties of the intrafusal fibres.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.