Abstract

Temperature is an important environmental factor which, when altered, requires adaptive responses from bacterial cells. While a sudden increase in the growth temperature induces a heat shock response, a decrease results in a cold shock response. Both responses involve a transient increase in a set of genes called heat and cold shock genes, respectively, and the transient enhanced synthesis of their proteins allows the stressed cells to adapt to the new situation. A sudden increase in the growth temperature results in the unfolding of proteins, and hydrophobic amino acid residues normally buried within the interior of the proteins become exposed on their surface. Via these hydrophobic residues which often form hydrophobic surfaces proteins can interact and form aggregates which may become life-threatening. Here, molecular chaperones bind to these exposed hydrophobic surfaces to prevent the formation of protein aggregates. Some chaperones, the foldases, allow refolding of these denatured proteins into their native conformation, while ATP-dependent proteases degrade these non-native proteins which fail to fold. Most chaperones and energy-dependent proteases are heat shock proteins, and their genes are either regulated by alternate sigma factors or by repressors. The cold shock response evokes two major threats to the cells, namely a drastic reduction in membrane fluidity and a transient complete stop of translation at least in E. coli. Membrane fluidity is restored by increasing the amount of unsaturated fatty acids and translation resumes after adaptation of the ribosomes to cold. Neither an alternative sigma factor nor a repressor seems to be involved in the regulation of the cold shock genes in E. coli, the only species studied so far in this respect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.