Abstract

Cotton is an important fibre-producing crop. Cotton fibres consist of highly elongated trichomes derived from the ovule. To improve the quality of cotton, it is necessary to identify the genes regulating fibre development. GhMYB3 was identified through bioinfomatic analysis and introduced to Arabidopsis and cotton to observe the phenotype. Protein inteaction and promoter bingding assays were conducted to explore the role of GhMYB3 in trichome fibre growth. Cotton fibre development might share a similar regulatory mechanism to Arabidopsis leaf trichomes, which is determined by the essential regulatory complex, MYB-bHLH-WD40. The GL1-like R2R3 MYB transcription factor GhMYB3 interacts with the AtGL3 protein involved in Arabidopsis trichome development. Ectopic expression of GhMYB3 could rescue the glabrous phenotype of the Arabidopsis gl1 mutant and produced more ectopic trichomes on inflorescence stems and floral organs, confirming its orthologous function in plant trichome development. The expression of GhMYB3 increased in response to exogenous gibberellin (GA3 ), auxin (IAA) and methyl jasmonate (MeJA). Overexpression of this gene in cotton leads to a slight increase in fibre length and lint percentage, possibly by activating the transcription of its downstream gene GhRDL1 or other fibre-related genes. The results increase our understanding of the key role of GhMYB3 in positively controlling plant trichome development, and this gene could be a potential target for molecular breeding in cotton.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call