Abstract

Numerous rootless fumaroles were developed on pyroclastic flows and a lava flow generated during the March 1986 eruptive cycle of Mount St. Augustine. Gases issued from fumarole vents with four different shapes: fissure, phreatic explosion crater, single/multiple ovoid opening, and diffuse, multiple opening. Fumarole distribution and morphology were controlled by preeruption drainage and topography, as well as by the thickness, compaction, and settling of the flow deposits. Fumarole temperatures measured in June and July 1986 ranged from 75°–394°C. Varying amounts of colorful and often roughly zoned encrustations are associated with all fumarole vent shapes. Only six types of crystalline phases were detected by X-ray diffraction, with gypsum the most abundant mineral, followed by anhydrite, sulfur, tridymite, halite, and soda alum. Scanning electron microscopy and energy dispersive X-ray analysis revealed a number of amorphous phases, mainly halogen-rich, as well as other minor crystalline phases. The mineral assemblages in the encrustations suggest formation conditions for these deposits within a general range of 25°–250°C in an oxidizing environment. Many of the amorphous phases are metastable and upon cooling of the fumarole lose nonstructural water and crystallize to more stable forms. The high halogen contents of the fumarole condensates and the mineralogy, chemistry, and morphology of the encrustations support leaching of the andesitic ash and lava flow by condensed acid vapors as the primary source for the chemical components contained in the encrustations. Comparison of traceelement (Sr, Ba, V, Co, Ni, and Cr) contents in unaltered and altered ash suggests that trace-element distribution follows a pattern of isomorphic substitution in the encrustation phases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.