Abstract

The current work investigates the impact of using immobilized Rhizopus oryzae NRRL 1526 for bioproduction of fumaric acid using agro-industrial residues as feedstock. This use of agro-industrial residues, a renewable feedstock, for the production of bio-based platform chemical makes the process cost-competitive as well as greener by preventing the release of assimilable organic carbon to the environment, thereby reducing the generation of greenhouse gases. Immobilization of R. oryzae has been proposed previously to alleviate operational difficulties confronted during free mycelial fungal fermentation. To this effect, three synthetic refuse materials namely polystyrene foam, polyester sponge and polyurethane foam were investigated for their suitability towards fumaric acid bioproduction. Polystyrene foam was identified as the most suitable support material for immobilization as well as fumaric acid production. In addition to the considerable reduction in the lag-phase (from 48 to 24 h) the reduction in the size of the support material from cubes of 1 cm to beads of 0.1–0.3 cm led to a 42% improvement in fumaric acid production (27 g/L against 19 g/L). Growing the polystyrene foam bead immobilized R. oryzae on apple pomace ultrafiltration sludge as sole feedstock yielded a final fumaric acid titer of 7.9 g/L whereas free mycelial fermentation yielded 6.3 g/L. Moreover, upon operating the fermentation with intermittent feeding, a three-fold increase (1.7 g/L to 5.1 g/L) in fumaric acid production was obtained upon supplementation of the apple pomace sludge media with molasses, an agro-industrial residue, as feed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call