Abstract
Although the dual role of natural organic matter (NOM) as an electron shuttle and an electron donor for dissimilatory iron (Fe) reduction has been extensively investigated, the underlying interfacial interactions between various exposed facets and NOM are poorly understood. In this study, fulvic acid (FA), as typical NOM, was used and its effect on the dissimilatory reduction of hematite {001} and {100} by Shewanella putrefaciens CN-32 was investigated. FA accelerates the bioreduction rates of hematite {001} and {100}, where the rate of hematite {100} is lower than that of hematite {001}. Secondary Fe minerals were not observed, but the HR-TEM images reveal significant defects. The ATR-FTIR results demonstrate that facet-dependent binding mainly occurs via surface complexation between the surface iron atoms and carboxyl groups of NOM. The spectroscopic and mass spectrometry analyses suggest that organic compounds with large molecular weight, highly aromatic and unsaturated structures, and lower H/C ratios are easily adsorbed on Fe oxides or decomposed by bacteria in FA-hematite {001} treatment after iron reduction. Due to the metabolic processes of cells, a significant number of compounds with higher H/C and medium O/C ratios appear. The Tafel curves show that hematite {100} possessed higher resistance (4.1-2.6 Ω) than hematite {001} (3.5-2.2 Ω) at FA concentrations ranging from 0 to 500 mg L-1, indicating that hematite {100} is less conductive during the electron transfer from reduced FA or cells to Fe oxides than hematite {001}. Overall, the discrepancy in the iron bioreduction of two exposed facets is attributed to both the different electrochemical activities of the Fe oxides and the different impacts on the properties and composition of OM. Our findings shed light on the molecular mechanisms of mutual interactions between FA and Fe oxides with various facets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.