Abstract

A reliable model of fulminant liver failure (FLF) is urgently required in this research field. This study aimed to develop a murine FLF model. We used three groups of male C57BL/6 mice: control, with azoxymethane treatment (AOM group), and with galactosamine and tumor necrosis factor-alpha treatment (Gal+TNF-alpha group). The effects of body temperature (BT) control on survival in all three groups were investigated. Using BT control, we compared the survival, histopathological findings and biochemical/coagulation profiles between the two experimental groups. The effects of hydration on international normalized ratios of prothrombin time (PT-INRs) were also checked. Dose-dependent survival curves were constructed for both experimental groups. Neurological behavior was assessed using a coma scale. No unexpected BT effects were seen in the control group. The AOM group, but not the Gal+TNF-alpha group, showed a significant difference in survival curves between those with and without BT care. Histopathological assessment showed consistent FLF findings in both experimental groups with BT care. There were significant differences between the experimental groups in aspartate aminotransferase levels and PT-INRs, and significant differences in PT-INRs between the sufficiently and insufficiently hydrated groups. There were significant differences between FLF models in the duration of each coma stage, with significant differences in stages 1 and 3 as percentages of the disease state (stages 1-4). The two FLF models with BT care showed different survival curves in the dose-dependent survival study. AOM provides a good FLF model, but requires a specialized environment and careful BT control. Other FLF models may also be useful, depending on the research purpose. Thoughtful attention to caregiving and close observation are indispensable for successful FLF models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.