Abstract
We consider fully-online construction of indexing data structures for multiple texts. Let T = {T_1, ..., T_K} be a collection of texts. By fully-online, we mean that a new character can be appended to any text in T at any time. This is a natural generalization of semi-online construction of indexing data structures for multiple texts in which, after a new character is appended to the kth text T_k, then its previous texts T_1, ..., T_k-1 will remain static. Our fully-online scenario arises when we maintain dynamic indexes for multi-sensor data. Let N and sigma denote the total length of texts in T and the alphabet size, respectively. We first show that the algorithm by Blumer et al. [Theoretical Computer Science, 40:31-55, 1985] to construct the directed acyclic word graph (DAWG) for T can readily be extended to our fully-online setting, retaining O(N log sigma)-time and O(N)-space complexities. Then, we give a sophisticated fully-online algorithm which constructs the suffix tree for T in O(N log sigma) time and O(N) space. A key idea of this algorithm is synchronized maintenance of the DAWG and the suffix tree.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.