Abstract

In recent years, rapid mold heating has served to enable the injection molding of thin-walled parts or micro/nano structures. Induction heating is an efficient way to heat metal parts by means of an electric current that flows through a conductive material by electromagnetic induction. The present study covers a numerical investigation of high-frequency induction heating of an injection mold in order to rapidly raise the mold temperature. To take into account the effects of thermal boundary conditions of induction heating, a fully coupled numerical analysis effectively connecting electromagnetic field calculation, heat transfer analysis, and injection molding simulation was carried out. The proposed integrated simulation was applied to the injection molding of a thin-wall part, and its results were compared with experimental findings in order to verify the validity of the proposed simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.