Abstract

BackgroundCardiovascular magnetic resonance (CMR) cine displacement encoding with stimulated echoes (DENSE) measures heart motion by encoding myocardial displacement into the signal phase, facilitating high accuracy and reproducibility of global and segmental myocardial strain and providing benefits in clinical performance. While conventional methods for strain analysis of DENSE images are faster than those for myocardial tagging, they still require manual user assistance. The present study developed and evaluated deep learning methods for fully-automatic DENSE strain analysis.MethodsConvolutional neural networks (CNNs) were developed and trained to (a) identify the left-ventricular (LV) epicardial and endocardial borders, (b) identify the anterior right-ventricular (RV)-LV insertion point, and (c) perform phase unwrapping. Subsequent conventional automatic steps were employed to compute strain. The networks were trained using 12,415 short-axis DENSE images from 45 healthy subjects and 19 heart disease patients and were tested using 10,510 images from 25 healthy subjects and 19 patients. Each individual CNN was evaluated, and the end-to-end fully-automatic deep learning pipeline was compared to conventional user-assisted DENSE analysis using linear correlation and Bland Altman analysis of circumferential strain.ResultsLV myocardial segmentation U-Nets achieved a DICE similarity coefficient of 0.87 ± 0.04, a Hausdorff distance of 2.7 ± 1.0 pixels, and a mean surface distance of 0.41 ± 0.29 pixels in comparison with manual LV myocardial segmentation by an expert. The anterior RV-LV insertion point was detected within 1.38 ± 0.9 pixels compared to manually annotated data. The phase-unwrapping U-Net had similar or lower mean squared error vs. ground-truth data compared to the conventional path-following method for images with typical signal-to-noise ratio (SNR) or low SNR (p < 0.05), respectively. Bland–Altman analyses showed biases of 0.00 ± 0.03 and limits of agreement of − 0.04 to 0.05 or better for deep learning-based fully-automatic global and segmental end-systolic circumferential strain vs. conventional user-assisted methods.ConclusionsDeep learning enables fully-automatic global and segmental circumferential strain analysis of DENSE CMR providing excellent agreement with conventional user-assisted methods. Deep learning-based automatic strain analysis may facilitate greater clinical use of DENSE for the quantification of global and segmental strain in patients with cardiac disease.

Highlights

  • Cardiovascular magnetic resonance (CMR) cine displacement encoding with stimulated echoes (DENSE) measures heart motion by encoding myocardial displacement into the signal phase, facilitating high accuracy and reproducibility of global and segmental myocardial strain and providing benefits in clinical performance

  • Cine DENSE shows superiority over late gadolinium enhanced (LGE) CMR and feature tracking in predicting major adverse cardiac events after myocardial infarction [9] and predicting outcomes of heart failure patients treated with cardiac resynchronization therapy [10]

  • Image analysis of cine DENSE to compute left ventricular (LV) wholeslice and segmental strain requires the following steps: (a) segmentation of the LV myocardium, (b) identification of the anterior right-ventricular (RV) insertion point into the LV to align the American Heart Association 16-segment model [16], (c) unwrapping of potentially wrapped displacement-encoded phase values of the myocardium, (d) computation of the spatiotemporal displacement field, and (e) computation of strain

Read more

Summary

Introduction

Cardiovascular magnetic resonance (CMR) cine displacement encoding with stimulated echoes (DENSE) measures heart motion by encoding myocardial displacement into the signal phase, facilitating high accuracy and reproducibility of global and segmental myocardial strain and providing benefits in clinical performance. Among various strain imaging methods, cardiovascular magnetic resonance (CMR) cine displacement encoding with stimulated echoes (DENSE) [2,3,4] CMR uniquely measures heart motion by encoding myocardial displacement into the signal phase, which facilitates high measurement accuracy [5], high reproducibility of global and segmental strain [6, 7], and rapid computation of displacement and strain [5, 8]. These properties translate to benefits in clinical performance. Identification of the anterior RV insertion point, and phase unwrapping, the remaining steps to compute displacement and strain are performed automatically without user assistance, as described [4, 5, 17, 18]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.