Abstract

Hybrid solar cells based on metal oxides in combination with semiconducting polymers are offering potential as future low-cost and upscalable photovoltaics. However, the use of toxic solvents such as chlorobenzene, chloroform or toluene for the polymer processing, remains a drawback. In an effort to attain the summit of environmentally friendly device fabrication, in this work, fully water-based hybrid solar cells are fabricated. Metal oxide nanorod arrays, prepared via an aqueous synthesis, are used as electron acceptors, while the need for toxic solvents in polymer processing is circumvented by replacing the widely used poly(3-hexylthiophene-2,5-diyl) (P3HT) with its water-soluble counterpart poly(3-(potassium-4-hexanoate)thiophene-2,5-diyl) (P3PHT). Comparing two deposition techniques and two metal oxides leads to a promising efficiency of 0.2% for drop casted P3PHT in combination with rutile TiO2 nanorod arrays, and demonstrates the possibility to develop fully ‘green’ nanorod based hybrid solar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.