Abstract

We investigate the stability properties of breather solitons in a three-dimensional Bose-Einstein condensate with Feshbach resonance management of the scattering length and confined only by a one-dimensional optical lattice. We compare regions of stability in parameter space obtained from a fully 3D analysis with those from a quasi-two-dimensional treatment. For moderate confinement we discover a new island of stability in the 3D case, not present in the quasi-2D treatment. Stable solutions from this region have non-trivial dynamics in the lattice direction; hence, they describe fully 3D breather solitons. We demonstrate these solutions in direct numerical simulations and outline a possible way of creating robust 3D solitons in experiments in a Bose-Einstein condensate in a one-dimensional lattice. We point out other possible applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.