Abstract

Biosensor systems for wearable continuous monitoring are desired to be developed into conformal patch platforms. However, developing such patches is very challenging owing to the difficulty of imparting materials and components with both high stretchability and high performance. Herein, we report a fully stretchable microfluidics-integrated glucose sensor patch comprised of an omnidirectionally stretchable nanoporous gold (NPG) electrochemical biosensor and a stretchable passive microfluidic device. A highly electrocatalytic NPG electrode was formed on a stress-absorbing 3D micropatterned polydimethylsiloxane (PDMS) substrate to confer mechanical stretchability, high sensitivity, and durability in non-enzymatic glucose detection. A thin, stretchable, and tough microfluidic device was made by embedding stretchable cotton fabric as a capillary into a thin polyurethane nanofiber-reinforced PDMS channel, enabling collection and passive, accurate delivery of sweat from skin to the electrode surface, with excellent replacement capability. The integrated glucose sensor patch demonstrated excellent ability to continuously and accurately monitor the sweat glucose level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.