Abstract

The photodissociation dynamics of the reaction H2CO+hnu --> H + HCO have been investigated in the range 60-400 cm(-1) above the reaction threshold. Supersonically cooled formaldehyde was excited into 15 specific J, K(a), K, rotational states i n two vibrational lev el s 2(1) 4(1) 6(1) and 2(2) 4(1) in the A(1A2) state. The laser-induced fluorescence spectra of the nascent HCO fragment provided detailed product state distributions (PSDs), resolved by N, K(a), K(c), and J. When just the overall molecular rotation N is considered the PSDs are in remarkable agreement with calculations based on phase space theory (PST). However, when the projection of N onto the molecular frame (K(a),K(c)) is included the distributions show consistent deviations from PST. In particular, there is a tendency to preserve the initial parent rotational motion about the a and b axes. The effect is that states with higher initial K(a) in H2CO produce higher final K(a) in the HCO fragment. There is also a tendency for the upper/lower members of the asymmetry doublets in H2CO to map onto the same upper/lower set of product state asymmetry doublets. Finally, there are oscillations in some of the detailed PSDs that remain unexplained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call