Abstract

We reported here "aqueous-route" fabrication of In2O3 thin-film transistors (TFTs) using an ultrathin solution-processed ZrOx dielectric thin film. The formation and properties of In2O3 thin films under various annealing temperatures were intensively examined by thermogravimetric analysis, Fourier transform infrared spectroscopy, and atomic force microscopy. The solution-processed ZrOx thin film followed by sequential UV/ozone treatment and low-temperature thermal-annealing processes showed an amorphous structure, a low leakage-current density (∼1 × 10(-9) A/cm(2) at 2 MV/cm), and a high breakdown electric field (∼7.2 MV/cm). On the basis of its implementation as the gate insulator, the In2O3 TFTs based on ZrOx annealed at 250 °C exhibit an on/off current ratio larger than 10(7), a field-effect mobility of 23.6 cm(2)/V·s, a subthreshold swing of 90 mV/decade, a threshold voltage of 0.13 V, and high stability. These promising properties were obtained at a low operating voltage of 1.5 V. These results suggest that "aqueous-route" In2O3 TFTs based on a solution-processed ZrOx dielectric could potentially be used for low-cost, low-temperature-processing, high-performance, and flexible devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.