Abstract

AbstractWe demonstrate the fabrication of a fully screen‐printed p‐type silicon solar cell with local hole‐collecting Al‐alloyed (Al‐p+) contacts with a record open circuit voltage of 716 mV. The solar cell is fabricated by using almost the same process equipment as PERC cells. One of the dominant recombination losses in PERC cells is the recombination in the passivated and in the contacted emitter regions that so far limit the open circuit voltage to values below 700 mV. We eliminate these loss channels by substituting the P‐diffused emitter by a passivating n‐type poly‐Silicon on Oxide (nPOLO) contact. We place this contact on the rear side because of its otherwise strong parasitic absorption. The Al‐p+ contacts are also located at the rear side to avoid front‐side shading. This results in a POLO‐IBC cell structure. The efficiency of the best cell so far is 23.0% with a designated area of 4 cm2 fabricated on a M2‐sized wafer. Scanning electron microscopy reveals an Al‐p+ thickness of less than 3.3 μm and only a few 100 nm at the contact ends, which is less than the 5 μm typically for optimized Al‐p+ contacts. A comparison of measured and simulated current‐voltage curves over a variation of the contact fraction extracts a high saturation current density of the Al‐p+ contact of J0‐Al ‐p+ = 2,250 fA cm−2 for the current screen‐print conditions and Al‐paste causing an absolute efficiency loss of 0.5%abs. The recombination at the AlOx/SiNy surface and the shunt resistance limits the cell by 0.6%abs each.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.