Abstract

We consider the problem of winner determination under Chamberlin--Courant's multiwinner voting rule with approval utilities. This problem is equivalent to the well-known NP-complete MaxCover problem (i.e., a version of the SetCover problem where we aim to cover as many elements as possible) and, so, the best polynomial-time approximation algorithm for it has approximation ratio 1 - 1/e. We show exponential-time/FPT approximation algorithms that, on one hand, achieve arbitrarily good approximation ratios and, on the other hand, have running times much better than known exact algorithms. We focus on the cases where the voters have to approve of at most/at least a given number of candidates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.