Abstract
We propose fully programmable redundancy schemes for spin-transfer-torque magnetic random access memories (STT-MRAMs). To store redundancy information, these schemes use magnetic tunnel junctions (MTJs), which are core memory elements of STT-MRAMs. This can greatly simplify the fabrication process of STT-MRAMs. Furthermore, it also allows reprogramming of the redundancy information after packaging or even during normal use by end-users without requiring any special high-voltage setup. We propose two redundancy schemes. First, we propose an address comparator, which uses MTJs and is a direct replacement of a conventional address comparator. Second, we propose a scheme in which the redundancy circuits share the storage cells and read–write peripheral circuits with the normal data array structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: IEEE Transactions on Magnetics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.