Abstract
This paper reports a high-performance humidity sensor made using a novel cellulose nanofiber (CNF)-silver nanoparticle (AgNP) sensing material. The interdigital electrode pattern was printed via reverse-offset printing using Ag nano-ink, and the sensing layer on the printed interdigitated electrode (IDE) was formed by depositing the CNF-AgNP composite via inkjet printing. The structure and morphology of the CNF-AgNP layer are characterized using ultraviolet-visible spectroscopy, an X-ray diffractometer, field emission scanning electron microscopy, energy-dispersive X-ray analysis, and transmission electron microscopy. The humidity-sensing performance of the prepared sensors is evaluated by measuring the impedance changes under the relative humidity variation between 10 and 90% relative humidity. The CNF-AgNP sensor exhibited very sensitive and fast humidity-sensing responses compared to the CNF sensor. The electrode distance effect and the response and recovery times are investigated. The enhanced humidity-sensing performance is reflected in the increased conductivity of the Ag nanoparticles and the adsorption of free water molecules associated with the porous characteristics of the CNF layer. The CNF-AgNP composite enables the development of highly sensitive, fast-responding, reproducible, flexible, and inexpensive humidity sensors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.