Abstract

We study the scheduling problem on parallel identical machines in order to maximize the total early work, i.e. the parts of non-preemptive jobs executed before a common due date, and investigate mainly the model with a fixed number of machines, for which a dynamic programming approach and a fully polynomial time approximation scheme (FPTAS) are proposed. The proposal of these methods allowed us to establish the complexity and approximability status of this problem more exactly. Moreover, since our FPTAS can be also applied for the two-machine case, we improve considerably the result known in the literature for this model, in which a polynomial time approximation scheme (PTAS) was given. The new FPTAS has not only the best computational complexity, but also the much better approximation ratio than the PTAS. Finally, the theoretical studies are completed with computational experiments, performed for dynamic programming, PTAS and FPTAS, showing the high efficiencies of FPTAS both in terms of time consumption and solution quality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call