Abstract

AbstractThe emerging optoelectronic memristive synapses having the advantages of both optics and electronics exhibit a great potential in neuro‐inspired computing, which is a new generation of artificial intelligence. Herein, a light stimulated synaptic memristor (LSSM) based on ZnO/Zn2SnO4 heterostructure is prepared with the characteristics of reversibly tunable conductance states by varying the wavelength of the incident light. The synaptic feature of this fully photon controlled memristive synapse is revealed by potentiation and depression behaviors stimulated by violet and red light pulses, respectively. Similar to biological brain, the device demonstrates the dynamic learning and forgetting behavior. All‐optically driven and bio‐vision inspired image processing function such as contrast enhancement is exemplified. The international Morse code for Arabic numerals (0–9) is also successfully conveyed by patterned light pulses and suggests the device's potential in the field of optical wireless communication for human–machine interface. Classical Pavlovian conditioning (associative learning) is successfully demonstrated through visible light induction. Finally, the device can realize the recognition application of Zalando's article image through the simulation based on Hopfield neural network (HNN). This work provides a promising approach toward optoelectronic neural systems and human–machine interaction technologies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.