Abstract

Distributed fractional derivative operators can be used for modeling of complex multiscaling anomalous transport, where derivative orders are distributed over a range of values rather than being just a fixed integer number. In this paper, we consider the space-time Petrov–Galerkin spectral method for a two-dimensional distributed-order time-fractional fourth-order partial differential equation. By applying a proper Gauss-quadrature rule to discretize the distributed integral operator, the problem is converted to a multi-term time-fractional equation. Then, the proposed method for solving the obtained equation is based on using Jacobi polyfractonomial, which are eigenfunctions of the first kind fractional Sturm–Liouville problem (FSLP), as temporal basis and Legendre polynomials for the spatial discretization. The eigenfunctions of the second kind FSLP are used as temporal basis in test space. This approach leads to finding the numerical solution of the problem through solving a system of linear algebraic equations. Finally, we provide some examples with smooth solutions and finite regular solutions to numerically demonstrate the efficiency, accuracy, and exponential convergence of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.