Abstract

We present a fully parameter-free density-functional approach for the accurate description of optical absorption spectra of insulators, semiconductors, and metals. We show that this can be achieved within time-dependent current-density-functional theory using a simple dynamical polarization functional. We derive this functional from physical principles that govern optical spectra. Our method is truly predictive because not a single parameter is used. In particular, we do not use an ad hoc material-dependent broadening parameter to compare theory to experiment as is usually done. Our approach is numerically efficient; the cost equals that of a calculation within the random-phase approximation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call