Abstract
AbstractThis tutorial introduces a systematic approach for addressing the key question of quantum metrology: For a generic task of sensing an unknown parameter, what is the ultimate precision given a constrained set of admissible strategies. The approach outputs the maximal attainable precision (in terms of the maximum of quantum Fisher information) as a semidefinite program and optimal strategies as feasible solutions thereof. Remarkably, the approach can identify the optimal precision for different sets of strategies, including parallel, sequential, quantum SWITCH‐enhanced, causally superposed, and generic indefinite‐causal‐order strategies. The tutorial consists of a pedagogic introduction to the background and mathematical tools of optimal quantum metrology, a detailed derivation of the main approach, and various concrete examples. As shown in the tutorial, applications of the approach include, but are not limited to, strict hierarchy of strategies in noisy quantum metrology, memory effect in non‐Markovian metrology, and designing optimal strategies. Compared with traditional approaches, the approach here yields the exact value of the optimal precision, offering more accurate criteria for experiments and practical applications. It also allows for the comparison between conventional strategies and the recently discovered causally‐indefinite strategies, serving as a powerful tool for exploring this new area of quantum metrology.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.