Abstract

We use neural networks to find 1‐dimensional marginal probability density functions (pdfs) of global crustal parameters. The information content of the full posterior and prior pdfs can quantify the extent to which a parameter is constrained by the data. We inverted fundamental mode Love and Rayleigh wave phase and group velocity maps for pdfs of crustal thickness and independently of vertically averaged crustal shear wave velocity. Using surface wave data with periods T > 35 s for phase velocities and T > 18 s for group velocities, Moho depth and vertically averaged shear wave velocity of continental crust are well constrained, but vertically averaged shear wave velocity of oceanic crust is not resolvable. The latter is a priori constrained by CRUST2.0. We show that the resulting model allows to compute global crustal corrections for surface wave tomography for periods T > 50 s for phase velocities and T > 60 s for group velocities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.