Abstract

The so-called Berk–Breizman model is applied to a cold bulk, weak warm beam, one-dimensional plasma, to investigate the kinetic instability arising from the resonance of a single electrostatic wave with an energetic particle beam. A Vlasov code is developed to solve the initial value problem for the full-f distribution, and the nonlinear evolution is categorized in the whole parameter space as damped, steady-state, periodic, chaotic, or chirping. The saturation level of steady-state solutions and the bifurcation between steady-state and periodic solutions near marginal stability match analytic predictions. The limit of a perturbative numerical approach when the resonant region extends into the bulk is shown. Frequency sweeping is observed, with time-evolution approaching theoretical results. A new method to extract the dissipation rate from frequency diagnostics is proposed. For small collision rates, instabilities are observed in the linearly barely stable region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.