Abstract

Edge plasmas present a few challenges for gyrokinetic simulations that are absent in tokamak cores. Among them are large fluctuation amplitudes and plasma-wall interactions in the open field line region. In this paper, the widely used core turbulence code GENE, which employs a δf-splitting technique, is extended to simulate open systems with large electrostatic fluctuations. With inclusion and proper discretization of the parallel nonlinear term, it becomes equivalent to a full-f code and the δf-splitting causes no fundamental difficulty in handling large fluctuations. The loss of particles to the wall is accounted for by using a logical sheath boundary, which is implemented in the context of a finite-volume method. The extended GENE code is benchmarked for the well-established one-dimensional parallel transport problem in the scrape-off layer during edge-localized modes. The parallel heat flux deposited onto the divertor target is compared with previous simulation results and shows good agreement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call