Abstract

In the last decade, haplotype reconstruction in unrelated individuals and haplotype block discovery have riveted the attention of computer scientists due to the involved strong computational aspects. Such tasks are usually addressed separately, but recently, statistical techniques have permitted them to be solved jointly. Following this trend we propose a generative model that permits researchers to solve the two problems jointly. The model inference is based on variational learning, which permits one to estimate quickly the model parameters while remaining robust even to local minima. The model parameters are then used to segment genotypes into blocks by thresholding a quantitative measure of boundary presence. Experiments on real data are presented, and state-of-the-art systems for haplotype reconstruction and strategies for block estimation are considered as comparison. The proposed method can be used for a fast and reliable estimation of haplotype frequencies and the relative block structure. Moreover, the method can be easily used as part of a more complex system. The threshold used for block discovery can be related to the quality-of-fit reached in the model learning, resulting in an unsupervised strategy for block estimation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.