Abstract
Fully localised three-dimensional solitary waves are steady water waves which are evanescent in every horizontal direction. Existence theories for fully localised three-dimensional solitary waves on water of finite depth have recently been published, and in this paper we establish their existence on deep water. The governing equations are reduced to a perturbation of the two-dimensional nonlinear Schrödinger equation, which admits a family of localised solutions. Two of these solutions are symmetric in both horizontal directions and an application of a suitable variant of the implicit-function theorem shows that they persist under perturbations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.