Abstract

AbstractThis paper presents a fully integrated three-way Doherty architecture to address the challenges of 5G applications using laterally-diffused metal-oxide semiconductor (LDMOS) technology. By using the so-called CDS cancelation method for the Doherty combiner design, a wideband impedance transformation is achieved, that combined with the three-way Doherty power amplifier (DPA) architecture allows for high efficiency in deep back-off, with a reduced load modulation for high bandwidth. Throughout this paper, the design approach and realization are described, while multiple critical design challenges will be addressed such as low frequency drain resonance optimization, impact of in-package coupling effects, and linearity versus efficiency tradeoff. Two state-of-the-art three-way fully integrated LDMOS DPA monolithic microwave integrated circuit (MMICs) are presented to demonstrate how these measures have been successfully applied to different power amplifier (PA) line-up components for 5G base station systems. First, a 60 W 1.8–2.2 GHz multi-stage device for driver application in true dual-band operation is presented. The circuit design pays special attention to extended PA video bandwidth thanks to integrated passive device. After digital pre-distortion (DPD) in dual-band operation, this highly linear device achieves an outstanding adjacent channel leakage ratio (ACLR) of −56 dBc for a 2cLTE 20 MHz 8 dB peak-to-average ratio signal spaced by 345 MHz, thus 385 MHz instantaneous bandwidth (IBW), with 29% efficiency at 35 dBm, 12 dB output back-off (OBO). Second, the simulation and measurement results of a 55 W 2.6 GHz multi-stage DPA for massive-MIMO final stage application are presented, which yields an excellent linearized efficiency of 49% using a 200 MHz 10cLTE signal with an ACLR lower than −47.5 dBc. For 8cLTE 20 MHz (160 MHz IBW), the device yields 50% efficiency with −50.7 dBc ACLR linearized after DPD. The achieved efficiency is well comparable to published GaN DPAs. These results were achieved by improved simulation techniques to minimize frequency dispersion and thus allow high efficiency operation over wide bandwidth. Both devices show that LDMOS is not only a mature technology which allows those PAs to be reliable and low-cost for mass production in very compact packages, but also provide best-in-class RF performance according to the needs of 5G base station systems.

Highlights

  • With the roll out of the fifth generation (5G) active antenna unit (AAU), telecommunication industry requires ever higher efficiency and linearity of RF power amplifiers (PAs) to support wideband signals for high data-rate transmission in low cost and compact solutions

  • Compared to other Doherty power amplifier (DPA) realized in laterally-diffused metal-oxide semiconductor (LDMOS) with similar high gain, which present linearized efficiency for wideband signals (160 MHz/200 MHz with high peak-to-average ratio (PAR) 8–9 dB) this study shows slightly lower gain compared to DPAs [44, 45], around 1–2 dB below

  • A fully integrated three-way Doherty architecture implemented in 28 V LDMOS MMIC technology has been presented to answer 5G high performance requirements and challenges

Read more

Summary

Introduction

With the roll out of the fifth generation (5G) active antenna unit (AAU), telecommunication industry requires ever higher efficiency and linearity of RF power amplifiers (PAs) to support wideband signals for high data-rate transmission in low cost and compact solutions. As discussed in [1] 5G New Radio requires wider bandwidth (400 MHz instantaneous bandwidth (IBW) for macro base stations and 200 MHz for m-MIMO base stations) with stringent linearity requirement fixed by 3GPP and Federal Communications Commissions (FCC). This involves more complexity to linearize PAs with digital pre-distortion (DPD) whereas on the other hand DPD power consumption needs to be lowered. 5G breakthrough is synonym to GaN High Electron Mobility Transistor (HEMT) technology introduction for the telecommunication base station industry. The combination of a mature technology and good RF performance for sub 6 GHz band makes LDMOS technology still very interesting for 5G if the bandwidth and efficiency limitations at the transistor level can be compensated by design improvements

Methods
Findings
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call