Abstract

We report an amorphous indium gallium zinc oxide (IGZO)-based toxic gas detection system. The microsystem contains an IGZO thin-film transistor (TFT) as a sensing element and exhibits remarkable selectivity and sensitivity to low concentrations of nitrogen dioxide (NO2). In contrast to existing metal oxide-based gas sensors, which are active either at high temperature or with light activation, the developed IGZO TFT sensor is operable at room temperature and requires only visible light activation to revive the sensor after exposure to NO2. Furthermore, we demonstrate air-stable sensors with an experimental limit of detection of 100 ppb. This is the first report on metal oxide TFT gas sensors without heating or continuous light activation. Unlike most existing gas sensing systems that take care of identifying the analytes alone, the developed IGZO microsystem not only quantifies NO2 gas concentration but also yields a 5-bit digital output. The compact microsystem, incorporating readout and analog-to-digital conversion modules developed using only two TFTs, paves the way for inexpensive toxic gas monitoring systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.