Abstract
The development of noninvasive glucose sensors capable of continuous monitoring without restricting user mobility is crucial, particularly for managing diabetes, which demands consistent and long-term observation. Traditional sensors often face challenges with accuracy and stability that curtail their practical applications. To address these issues, we have innovatively applied a three-dimensional porous aerogel composed of Ti3C2Tx MXene and reduced graphene oxide (MX-rGO) in electrochemical sensing. It significantly reduces the electron-transfer distance between the enzyme's redox center and the electrode surface while firmly anchoring the enzyme layer to effectively prevent any leakage. Another pivotal advancement in our study is the integration of the sensor with a real-time adaptive calibration mechanism tailored specifically for analyzing sweat glucose. This sensor not only measures glucose levels but also dynamically monitors and adjusts to pH fluctuations in sweat. Such capabilities ensure the precise delivery of physiological data during physical activities, providing strong support for personalized health management.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.