Abstract
A near-optimal neurofuzzy external controller is designed in this paper for a static compensator (STATCOM) in a multimachine power system. The controller provides an auxiliary reference signal for the STATCOM in such a way that it improves the damping of the rotor speed deviations of its neighboring generators. A zero-order Takagi-Sugeno fuzzy rule base constitutes the core of the controller. A heuristic dynamic programming (HDP) based approach is used to further train the controller and enable it to provide nonlinear near-optimal control at different operating conditions of the power system. Based on the connectionist systems theory, the parameters of the neurofuzzy controller, including the membership functions, undergo training. Simulation results are provided that compare the performance of the neurofuzzy controller with and without updating the fuzzy set parameters. Simulation results indicate that updating the membership functions can noticeably improve the performance of the controller and reduce the size of the STATCOM, which leads to lower capital investment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.